A Versatile Self-Assembly Strategy for the Synthesis of Shape-Selected Colloidal Noble Metal Nanoparticle Heterodimers
نویسندگان
چکیده
The self-assembly of individual nanoparticles into dimers-so-called heterodimers-is relevant for a broad range of applications, in particular in the vibrant field of nanoplasmonics and nanooptics. In this paper we report the synthesis and characterization of material- and shape-selected nanoparticle heterodimers assembled from individual particles via electrostatic interaction. The versatility of the synthetic strategy is shown by assembling combinations of metal particles of different shapes, sizes, and metal compositions like a gold sphere (90 nm) with either a gold cube (35 nm), gold rhombic dodecahedron (50 nm), palladium truncated cube (120 nm), palladium rhombic dodecahedron (110 nm), palladium octahedron (130 nm), or palladium cubes (25 and 70 nm) as well as a silver sphere (90 nm) with palladium cubes (25 and 70 nm). The obtained heterodimer combinations are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX), dynamic light scattering (DLS), and zeta-potential measurements. We describe the optimal experimental conditions to achieve the highest yield of heterodimers compared to other aggregates. The experimental results have been rationalized using theoretical modeling. A proof-of-principle experiment where individual Au-Pd heterodimers are exploited for indirect plasmonic sensing of hydrogen finally illustrates the potential of these structures to probe catalytic processes at the single particle level.
منابع مشابه
Gold Nanorods as Multipurpose Building Blocks
Among all of the plasmonic noble metal nanoparticles the gold nanorod (GNR) retains a special place. Its elongated shape gives it unique anisotropic optical and physico-chemical properties. Owing to possibility to control the end-cap geometry, the GNR is the most tunable shape in the terms of localized surface plasmon resonance (LSPR) spectral range. Moreover, the possibility to synthesize GNRs...
متن کاملSelf-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties.
Self-assembly at the nanoscale represents a powerful tool for creating materials with new structures and intriguing collective properties. Here, we report a novel strategy to synthesize nanoscale colloidosomes of noble metals by assembling primary metal nanoparticles at the interface of emulsion droplets formed by their capping agent. This strategy produces noble metal colloidosomes of unpreced...
متن کاملEngineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly
The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...
متن کاملSelf Assembly of Colloidal Gold Nanoparticles on Diblock Copolymer Thin Film Templates
Self-assembly of metallic nanoparticles were investigated for the development of field-enhanced chemical and biological detection devices with the capacity to achieve single-molecule level detection resulting from surface enhanced Raman scattering, associated with closely spaced noble metal nanostructures. Using chemical selfassembly, we attached monodisperse, colloidal gold nanoparticles on se...
متن کاملOpto-thermophoretic assembly of colloidal matter
Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2014